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SYNOPSIS

“ A new finite element procedure for the static analysis of tall buildings

is presented, A common element formulation with linear and bilinear displace-
ment fields is used for the floor slabs and the shear walls. Fictitious beams
are included for the transmission of moments in the plane of the elements. The
floors are treated as substructures; their stiffness matrix and load vectors
are condensed prior to the solution of the system of equilibrium equations. A
reduced structure consisting of columns, shear walls and equivalent floor stiff-
nesses is thus considered. An extension of this work for earthquake analysis
is outlined.
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L. Introduction

The availability of digital computers and the growing demand for high
rise structures have resulted in considerable progress in the analysis of tall
buildings during the last decade.

Much work remains to be done, however, regarding their response to
dynamic actions such as earthquakes, etc, The problem is further complicated
by the existence of torsional modes of vibration that may be induced when the
shear centre and the centre of mass fail to coincide.

In order to determine such a response, a stiffness analysis of the system,
in which all six degrees of freedom are considered at each node, would be best
suited. However, the extremely high number of equations to be solved makes
such an approach out of reach of present day computers, It is proposed in
this paper that this number can be significantly reduced by recognizing that
most tall buildings consist of a restricted number of vertical columns and
shear walls connected by a large number of floor slabs of only a few different
types, and by treating the latter as substructures.

A computer program for the static, linear and elastic analysis of tall
buildings has been developed along these lines using the finite element method,
Initial results are presented, and an outline of the work to be dome in order
to extend its capabilities to dynamic problems is given.

2. Methods of Analysis of Tall Buildings

Conferences[1] and excellent review papers [2] on the analysis of tall
buildings have contributed to assess and spread our knowledge of this field
and have aroused a great deal of interest.

The duality of the approaches available for the solution of plane elastic
shear wall systems subjected to static lateral loads has now been transposed
in the analysis of true three~-dimensional structures, that is structures that
may not be reduced to plane shear wall-frame configurations by virtue of their
symmetry. Jaeger et al [3], Rosman [4] and Gluck [5] have extended the
continuum method of analysis of such coupled shear walls, and obtain the
deflections and internal actions of three-dimensional structures by solving a
system of linear differential equations of equilibrium or compatibility [4],

Michael [6] has studied the torsional behaviour of core walls coupled by
lintel beams,

Winokur and Gluck [7] and Stamato and Stafford Smith [8], on the contrary,
call for the solution of a system of linear equations of equilibrium obtained
from a stiffness analysis. Coull and Irwin [9] combine the advantages of both
continuum and equilibrium approaches.

In all these cases, coupling between the individual shear walls or frames
located in different planes is performed by the floor slabs, which are assumed
to be infinitely rigid in their own plane . This assumption is extremely
helpful in reducing the number of redundancies considered in the analysis,
since only three rigid body degrees of freedom, plus a number of vertical dis-
placements at convenient points are then needed to describe completely the
behaviour of the structure under lateral as well as vertical loads, Also,
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when evaluating the interaction between these vertical bents the warping
rigidity of the floor slabs is neglected, This assumption is not compatible
with the usual presence of heavy floor beams perpendicular to the shear walls,

Dickson and Nilson [10] have considered the case of cellular buildings
made of continuous shear walls and slabs subjected to membrane actions only.

Goldberg [11] has performed the analysis of structures consisting of
parallel shear walls and frames. The warping stiffness of the floor slabs
was again neglected; however, the effect of their in-plane deformations was
included. This work was extended by Majid and Croxton [12] in order to take
into account the axial strains in the load bearing parts of the structure, as
well as the effect of eccentric vertical loads. The analysis of a ten-storey
building having a length/width ratio of only 3.2 and slab thickness of 3 in.
was carried according to this approach, The wind was resisted by plane shear
walls situated at the extremities of the building and by interior three bay
portal frames. The results were compared to those obtained by assuming
rigid floors, A discrepancy of up to 100% was observed in the evaluation of
the moments at the base of the central columms [12].

These remarks emphasize the need for a more general method of analysis
of building structures in order to describe more accurately even their static
behaviour, In the present work, the finite element method is used, All
the structural components are represented by an assembly of basic elements
connected at nodal points, at which all six physical displacements are con=-
sidered.

The procedure calls for the following steps:

1. Each typical floor is idealized by means of discrete elements; its
stiffness matrix and applied load vector are generated,

2. Those nodes common to the floor and to the vertical system consisting
of columns and shear walls are recognized as boundary nodes; the floor
stiffness matrix and load vector are condensed in order that only those
degrees of freedom at the boundary nodes be retained,

3. Steps 1 and 2 are repeated for all typical floors; the reduced stiffness
matrices and load vectors are stored on disc.

4, The stiffness matrix and the load vector of the vertical system are
generated, At the intersection with each floor, the stiffness co-
efficients and load vector of the appropriate typical floor are retrieved
from storage and added to the above ones.

5. The system of equations thus formed for the whole structure is solved,
and the displacements at all nodes of the vertical system are obtained,

6. When required, the displacements, stresses and strains inside the floors
are calculated.

For the sake of the compactness of the program it was decided to adopt
the same formulation for all the plate elements, whether they belong to the
floor substructures or to the shear walls. Rectangular elements were chosen
for their good convergence properties and simplicity. This implies that



structures made of rectangular parallelepipeds, alone, may be analysed by the

program described herein, Should the need arise, however, this limitation
could be avoided by the introduction of subroutines for the derivation of
triangular [13], or even quadrilateral element properties. This would then

bring buildings of triangular or curved plan within the capabilities of the
program.

With this '‘parallelepiped context!, all possible configurations may be
accepted: frames, coupled shear walls, enclosed shafts or coupled core walls,
slabs, whether monolithic or with holes, etc, The slabs and walls themselves
may be reinforced with edge beams, or ribs and diagonal braces may be
included. At the time of writing, the development of the program is only in
its early stages and the size of the structures that may be analysed is still
very small, This point will be discussed at the end of this paper. In the
following sections, a detailed description of the element formulations and
computation procedures is given, as well as the solutions of a few numerical
problems.

24 The Finite Element Formulation of the Problem

In order that the finite element method may be used successfully for the
analysis of tall buildings, a number of questions inherent in the idealization
of the structure must be solved, These are:

1. The selection of adequate element displacement functions so that a rapid
convergence towards the true behaviour be attained with a minimum number
of elements,

2. The inclusion of linear beam elements in such a way that a variety of
configurations such as rigid frames, diagonal braces, edge beams, lintel
beams, etc. be considered within the single idealization pattern.

3, The finite element model of plates must take into account the in-plane
rotational stiffness of the plate, under unit rotations Oz parallel to
the Z axis. (see Figure 1),

2.1 The Plate Elements

Considerable efforts have been devoted in the last ten years to the
development of finite element formulations. In the solution of tall building
problems, however, the list of the available ones is restricted for the
following reasons:

(a) it is advantageous that the degrees of freedom considered at
each node be only the physical translations and rotations in
the direction of the coordinate axes;

(b) mid-side nodes should be avoided in order to keep the bandwidth
of the stiffness matrices to a minimum;

(c) the displacement functions should be conforming and the edge dis-

placements of adjacent elements situated in orthogonal planes should
be compatible,
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A typical element and a set of coordinate axes are shown in Figure 1,
with the positive directions of the translations and rotations as indicated,
The element properties are developed within the limitations of the small
deflection plate theory, For membrane action, the displacements are given
by -

uj =1 X y xy O
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The corresponding stiffness matrix [K ] is derived in the classical and well-
documented manner [14]. 1In this formﬁlation, no provision is made for the
evaluation of the stiffness of the element under a unit @ displacement. This
point will be discussed in the next section. For the trinsverse action, new
displacement functions were developed in order that the above requirements be
met, They are an extension of the work done previously by Melosh [15], Utku
[16] and Mufti [13] on triangular elements. The displacement functions are:
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It can be readily verified that the functions (4) may be determined uniquely
within the rectangular element in terms of the rotations 6 ; 8 at the nodes.
The displacement function (3) is determined within each tr%angXlar subregion
of the element, in terms of the nodal transverse displacements.
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It should be noted that w and GX, 8 _ are expressed separately, and that
their displacement functions are incdnsiStent. As is well known, this
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normally produces nodal forces under rigid body motions [16]. This difficulty
is circumvented in the present case by evaluating separately the contributions
of wand 8_, 6 to the stiffness of the element, and by restoring the equili-
brium of tfe nddal forces by means of an equilibrium algorithm.

The details of this procedure have been reported elsewhere [17], wherein
very good convergence properties were obtained, Figure 2 shows the conver-
gence graph for the central deflection of a square simply supported plate under
uniformly distributed load. The curves obtained for triangular elements with
Utku's linear displacement function [16] and Tocher's cubic function [13] have
also been plotted, Results of other plate problems under concentrated loads,
as well as of cylindrical shells and folded plates have also been reported f177.

2.2 Beams and Braces

In addition to the rectangular plate elements described above, linear
elements are also included in the program. The six displacements and
rotations of Figure 1 are considered at each end of the beam, and these lead
to a 12 x 12 stiffness matrix which is readily available in the literature [18].
The organization of the program is as follows:

Each beam element is assigned to a rectangular element, of which it
connects two nodes. Conversely, one rectangular plate element may "support"
up to six beam elements along its sides and diagonals, These six elements
are marked "a" to "f" in Figure 3. Isolated lintel beams, columns or diagonal
braces are likewise assigned to a plate element of zero thickness.

The calculations are organised to proceed element by element viz:-

(i) the stress, strain and stiffness matrices are generated for the plate
itself;

(ii) the stiffness matrix of the beams is calculated, and both are added
together.

Should the thickness of the element be zero, or should no beam be assigned
to it, then the corresponding part of the calculations is omitted automatically.
This approach has two major advantages; firstly, the required computation time
is very small; secondly, since in most cases one of the principal planes of
the beams is parallel to the plane element, no further definition of the
orientation of the members is required. A flow chart describing this parti-
cular aspect of the program has been given in [19]. Provision for offset
beams is included.

2.3 The In-Plane Stiffness of the Plate Elements

In the formulation of the element, only expressions for the u and v in-
plane displacements are considered. When six degrees of freedom are con~
sidered at each node, zero diagonal terms subsist in the stiffness matrix and
singularity problems may arise, The authors have indicated elsewhere [17]
how this problem could be avoided by including arbitrary small terms at the
intersection of those rows and columns of the matrix corresponding to Mz and
OZ respectively,
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When a concentrated moment M, is transmitted to the plate, however,
these terms do not provide an adequate model for the in-plane rigidity.
Majid and Williamson proposed that such a model could be obtained by adding
equivalent flexural members along the diagonals of the element [20]. In
reference [19], the authors have used a modified procedure for the analysis
of plane shear walls. Flexural beams were added along the sides of the
element in such a way that the resulting stress pattern was as little affected
as possible by these fictitious members.

This point is illustrated in Figure 4 which shows the abutment of a
lintel beam in a shear wall, at point A. If the dimensions of the elements
are large (as in Figure 4a) a horizontal beam AB will transmit the moment MZ
at A in the form of vertical reactions at A and B, and a vertical stress
pattern will result in the wall. If, on the contrary, the height of the
elements is smaller than the half depth of the beam, the moment at A will be
best transmitted by short vertical beams AC and AD, in order that it be
resisted by two horizontal forces at C and D,

This procedure has been shown [19] to give a very accurate picture of
the stress concentrations in the walls, In both cases, complete fixity of
the beam at A will be ensured if a large value of the moment of inertia, of
the order of 1000 times that of the lintel beam, is assigned to the fictitious
beams.

Michael [21] has shown that elastic deformations in the walls due to the
stress concentrations at A were the cause of a significant reduction in the
fixity of the beam. Using Michael's conclusions, this may be taken into
account by assigning to the fictitious beams a total inertia.

-
b 18
where d is the depth of the lintel beam

t is the thickness of the wall
1 is the length of the fictitious beam

@)

This formula is applicable to the case of an elastic beam embedded in a
wall of the same material. Corresponding formulae could be used for other
cases, such as the embedment of a steel beam in a concrete wall. The plane
shear wall-frame structure shown in Figure 5 has been analysed with the
proposed finite element idealizationm. On Figure 6 the lateral deflections
have been plotted, and are compared with the value obtained by Oakberg and
Weaver [22]. Figure 7 shows the shear forces and the moments in the left
hand floor beams, at their connection to the shear wall. In this problem
the length of the beams and columns has been taken from centre line to centre
line, whereas Oakberg and Weaver considered the clear spans only. Hence,
the lateral deflections obtained are slightly greater than in [22], and so are
the moments in the lintel beams. Shear deformations were included in both cases.

3. The Computer Program and Substructure Analysis

The computer work described in this section is a development of a finite
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element program given in Reference [23] and in which the system of equations
is generated in a tridiagonal manner, and is solved by forward elimination
and backward substitution,

In order that a large part of the program may be used in this substructure
analysis, the same organization was retained for the analysis or the typical
floors. Their stiffness matrix and load vectors are thus also generated
partition by partition. A prime advantage of this scheme is that most trans-
fers of data between the in-core memory of the computer and the storage devices
are performed on entire matrices rather than row by row.

The new program, whose general flow chart is given on the next page, con-
sists of one major loop. For a structure containing n typesof floors, this
loop is executed n + 1 times. During the first n times, the stiffness matrices
and load vectors of the floors are generated and condensed, The resulting
matrices are stored on disc by direct access under an identification number
corresponding to the type of the floor. During the (n + 1)st execution, the
vertical structure consisting of the separate shear walls and frames is treated,
Its stiffness matrix is generated, again partition by partition. Each
partition corresponds to a full horizontal "slice'" of the building; when the
"slice" corresponds to a floor level, the equivalent stiffness and load vectors
obtained above are retrieved from storage and added. The stiffness matrix and
load vectors thus obtained are those of the entire structure, after condensat-
ion of the floors, It is imperative that the order in which the nodes are
numbered in the floors and the vertical system be consistent,

The solution of the system of equations then proceeds as indicated at the
beginning of this section. The stiffness matrix of each partition is inverted
after decomposition into

T
[K] = [L]-[D]-[1] (@)
where,
[L] is a lower triangular matrix of unit diagonal terms
D] is a diagonal matrix

[L]T is the transpose of [L]

At this stage, only the displacements and stresses in the vertical system
are computed, This information is sufficient to calculate the stress resul-
tants in the floor beams, due to the overall displacements of the structure.
The displacements, moments and shears within the floor slabs could also be com-
puted without difficulty, at a number of levels specified by the designer,
However, the need of such information seems questionable in view of its cost,
since the meshsize adopted for the finite element analysis will not necessarily
comprise those few locations which are critical for the design of the floor
slabs.

In substructure analysis, the stiffness matrix is usually subdivided
according to

KII KIB ] ()

(B} = [KBI KBB
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READ NFLOOR

| nPrROB = NFLOOR + 1 |

T
{ 14 = 1, NPROB )

READ INPUT

—( EACH PARTITION >

I

FORM STIFFNESS MATRIX
AND LOAD VECTOR OF PARTITION

1A { NFLOOR

FLOOR LEVEL

ADD FLOOR EQUIVALENT
STIFFNESSES AND LOADS

LA { NFLOOR

FORM AND STORE KBI
FORM KII,UI
FORM D. L.
FORM AND STORE (D.L')~

1A g NFLOOR

FORM R = KBL(D.LT)'1

FORM KBB* = KBB-R.D.R-
FORM FI* = (L)'l.FI
FORM FB* = FB-R.FI*

STORE LA,KBB% FB*

SOLVE SYSTEM OF EQUATIONS
PRINT DISPLACEMENTS
AND STRESSES
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where,

KIT is the matrix of internal forces due to unit internal
displacements,

KBI is the matrix of boundary forces due to unit internal
displacements,

KBB is the matrix of boundary forces due to unit boundary
displacements,

The load vector is also decomposed into submatrices according to:

b = {UI} (10)
UB

UI  includes all the loads applied at interior nodes,

where,

UB includes the loads applied at the boundary nodes.

The,computation of the condensed stiffness matrix [KBB*] and load vector
UB  requires the inversion of [KII] and the subsequent multiplication
[kBI] - [KII™1lj. [KIB]. 1In our case [KII] may be large and these operations
require more memory than is available in the present generation of computers,

An alternative method in which these calculations are performed by decom-
position and forward substitution has been proposed by Rosen and Rubinstein
[24] and has been used in this work. Some of the calculations are outlined
in the flow chart, using the notations of equations 8, 9, 10 and reference [24].

At the time of writing, the maximum size of each partition is only 12
nodes, for a core capacity of 300 Kbytes, or 18 nodes for 400 Kbytes. These
figures will be improved as further development work is performed, The
number of partitions (which is proportional to the height of the building) is
not restricted. Vertical as well as lateral loads may be considered at all
the nodes. The core requirement data given above are given for am IBM 360/75
computer, whose maximum capacity is reached, However, the IBM 370 type is
already available and should provide much expanded capabilities and improved
computation efficiency.

The small structure shown in Figure 8 has been analysed by means of this
program, The floor has been idealized by means of nine square elements,
whereas the vertical system consists of only two rectangular elements of zero
thickness used to define the location of the corner columnms, The u displace-
ment at node 5 is given below; it is compared to the values obtained by a
simple plane frame analysis performed for two extreme cases of beam stiffness.

program 0.0489
bare frame 0.0606
bare frame + 1/2 width of slab 0,052

For the same problem, Majid and Williamson [20] have obtained 0.0625 for an
unspecified Perspex material,
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4, The Treatment of Dynamic Problems

In the previous section, a means of reducing the size of a building
structure for a static finite element analysis has been provided. In the case
of earthquakes the response of the structure to the motion of its base consists
mainly of horizontal displacements. It is proposed that the procedure des-
cribed above may also be used for an earthquake analysis.

The additional work to be performed comprises:

(i) the determination of the consistent mass matrix of the typical
floors [25];

(ii) their condensation along the lines described above;

(iii)the computation of the consistent mass matrix of the column and shear
wall system, to which the equivalent masses of the floors must be
added.

At this stage, the size of the condensed structure will in general be too
large for an eigenvalue solution and further reduction will be necessary.
This will require further condensation of the stiffness and mass matrices and
of the load vector. Generally, the number of degrees of freedom will be
reduced in such a way that only two horizontal translations per node are
retained,

5. Conclusion

In this paper, a new approach to the analysis of tall buildings using
finite elements has been presented, A discussion of the major problems that
had to be solved has been given, and has been illustrated by means of a few
simple examples. In particular, a procedure has been proposed for reducing
the size of the problem prior to the solution of the system of equilibrium
equations. This technique is being used successfully for the static analysis
of elastic structures; the additional steps necessary for an earthquake
analysis have been outlined.
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DISCUSSION OF PAPER NO. 13

NEW DEVELOPMENTS IN THE ANALYSTS OF SHEAR WALL BUILDINGS

by

J.C. Mamet, A.A. Mufti and L.G. Jaeger

Question by: I. Miller

I wonder if the use of "imaginary beams" to transmit moments into shear
walls does not pose some difficulty. 1If these beams are too stiff, the stiff-
ness matrix will become ill-conditioned. It will be necessary to ensure that
the stiffness of these beams is more or less compatible with that of the other
structural elements.

Perhaps the addition of rotational degrees of freedom in the element is
a safer procedure.

Reply by: J.C. Mamet

The authors have experienced no difficulty due to the introduction of
fictitious beams for the analysis of shear walls. This may be due to the
fact that the flexural properties assigned to these members are always derived
from those of actual members. In a coupled shear wall problem, for instance,
the moment of inertia chosen ranges between 100 - 1000 times that of the
lintel beams. These values derive from convergence studies carried out on
simple cases.

I1l-conditioning does occur, however, when one part of the structure is
much stiffer than the other, as is the case of shear wall-frame problems
(see Fig. 5). On the TBM 360 computer, these problems have been eliminated
by resorting to double precision calculations. This of course is independent
of the idealization chosen.

As for the addition of rotational degrees of freedom in the formulation
of the element properties, the work of Spira and Sokal (26) may be referred to,
but the present procedure is certainly simpler and more versatile. Ample
information is also given in reference (19) which will appear in the
Proceedings of the Institution of Civil Engineers.

(26) Spira, E. and Sokal, Y. Discussion on "New Rectangular Finite Element

for Shear Wall Analysis", J.Str. Div. Am.Soc. Civ. Engrs., 1970, (Aug.),
1799-1802.
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Question by: A. Heidebrecht

Tn the reference which you quoted regarding possible deformation and
vibration modes due to in-plane floor deformations, under what conditions
were these modes found to occur?

In your single storey example, did you compare the effect of in-plane
floor deformations with the case of a floor diaphragm rigid in its own plane?
What order of in-plane floor deformations did your calculations show?

Reply by: J.C. Mamet

The example treated in (27) is a fourteen storey building whose length/
width ratio is 12.5. It has a steel skeleton consisting of 18 one bay frames
and floor girders on which precast concrete slabs are laid. In order to
increase the stiffness of the building in the transverse direction, vertical
precast panels are positioned between the columns, thus transforming the 18
frames into continuous shear walls. Concrete is then poured in all the
joints and around the exposed steel for fire protection.

The single storey example shown in Fig. 8 was meant to illustrate the
procedure used in the program; it has a square slab and therefore no
noticeable floor deformation was anticipated. The results indicated are
preliminary values; more work is being devoted to that problem. The study
of a two storey, two bay structure has also been undertaken.

(27) Adachi, N. et al., "Forced Vibration Test of a Fourteen Storied Prefabri-

cated Apartment House', Annual Report, The Kajima Institute of Construc-—
tion Technology, Japan, 1969, 18, 461-471.
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